Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers
نویسندگان
چکیده
In experiments on small bundles of intact fibers from a rat fast muscle, in vitro, we examined the decline in force in repeated tetanic contractions; the aim was to characterize the effect of shortening and of temperature on the initial phase of muscle fatigue. Short tetanic contractions were elicited at a control repetition rate of 1/60 s, and fatigue was induced by raising the rate to 1/5 s for 2-3 min, both in isometric mode (no shortening) and in shortening mode, in which each tetanic contraction included a ramp shortening at a standard velocity. In experiments at 20 degrees C (n = 12), the force decline during a fatigue run was 25% in the isometric mode but was significantly higher (35%) in the shortening mode. In experiments at different temperatures (10-30 degrees C, n = 11), the tetanic frequency and duration were adjusted as appropriate, and for shortening mode, the velocity was adjusted for maximum power output. In isometric mode, fatigue of force was significantly less at 30 degrees C ( approximately 20%) than at 10 degrees C ( approximately 30%); the power output (force x velocity) was >10x higher at 30 degrees C than at 10 degrees C, and power decline during a fatigue run was less at 30 degrees C ( approximately 20-30%) than at 10 degrees C ( approximately 50%). The finding that the extent of fatigue is increased with shortening contractions and is lower at higher temperatures is consistent with the view that force depression by inorganic phosphate, which accumulates within fibers during activity, may be a primary cause of initial muscle fatigue.
منابع مشابه
Experiments on Intact Mammalian (rat) Muscle Fibers Muscle Fatigue Examined at Different Temperatures In
physiology, especially those papers emphasizing adaptive and integrative mechanisms. It is published 12 times a publishes original papers that deal with diverse area of research in applied
متن کاملFiber type and temperature dependence of inorganic phosphate: implications for fatigue.
Elevated levels of P(i) are thought to cause a substantial proportion of the loss in muscular force and power output during fatigue from intense contractile activity. However, support for this hypothesis is based, in part, on data from skinned single fibers obtained at low temperatures (< or =15 degrees C). The effect of high (30 mM) P(i) concentration on the contractile function of chemically ...
متن کاملHighlights from the literature.
Question: What causes early muscle (myofib-rillar) fatigue in intact muscle fibers, and how does temperature affect these results? Background: When muscles are activated by motoneurons, they respond by generating tension in the muscle fibers. This process requires the hydrolysis of ATP, which results in an accumulation of metabolic products. The accumulation of metabolic products is a primary f...
متن کاملThe depressive effect of Pi on the force-pCa relationship in skinned single muscle fibers is temperature dependent.
Increases in P(i) combined with decreases in myoplasmic Ca(2+) are believed to cause a significant portion of the decrease in muscular force during fatigue. To investigate this further, we determined the effect of 30 mM P(i) on the force-Ca(2+) relationship of chemically skinned single muscle fibers at near-physiological temperature (30 degrees C). Fibers isolated from rat soleus (slow) and gas...
متن کاملفعالیت فیبرهای گاما در وضعیت استراحت و هنگام کشش های فازیک و تونیک در دوک عضلانی دم Rat
Background and Purpose: Basically, The muscle spindle is innervated by γ – fibers, γ – fibers are divided into phasic and tonic groups on the basis of their function. Ït is believed that phasic one γ innervate all the muscle spindle fibers where as tonic one innervate only tonic muscle spindle fibers and phasic of type two. The purpose of this study was to observe the fiber activity during ph...
متن کامل